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The interaction of a point vortex with a layer of constant vorticity, bounded below
by a wall and above by an irrotational flow, is investigated as a model of vortex–
boundary layer interaction. This model calculates both the evolution of the interface
which separates the vortex layer from the irrotational flow and the trajectory of
the vortex. In order to determine the conditions which lead to sustained unsteady
interaction, three cases are investigated where the mutual interaction between the
vortex and interface is initially assumed to be weak. (i) When a weak point vortex lies
outside the layer, the vortex moves with a horizontal speed that is small relative to the
long-wave phase speed of interfacial waves. A uniformly valid solution is found for
the interface evolution. This solution shows that for long times the interface and the
vortex approach an equilibrium state. (ii) When a weak vortex lies inside the layer,
the vortex is convected by the mean flow and moves with a horizontal speed which
matches the phase speed of an interfacial wave. This results in a strong interaction
between the vortex and the interfacial wave. On the interface, a monochromatic
wavetrain forms upstream of the vortex and acts to attract or repel the point vortex.
The displacement of the vortex due to the wavetrain results in the modulation of the
amplitude and wavelength of the wavetrain. If the point vortex is attracted toward
the interface the horizontal speed of the vortex slows and disturbances directly above
the vortex focus and grow leading to the ejection of vorticity. (iii) When the point
vortex lies close to the wall and it is sufficiently strong it propagates downstream with
a large horizontal velocity. In this case, the amplitude of the interfacial disturbance is
independent of the vortex strength. Again, the vortex and the interface approach an
equilibrium state. The results of this paper indicate that when the horizontal speed
of the vortex matches the phase speed of the interfacial disturbance, it is necessary to
account for the vertical displacement of the vortex in order to predict the behaviour
of vortex–boundary layer interactions.

1. Introduction
For high-Reynolds-number flows the time scale associated with the evolution of the

flow is often much smaller than the viscous time scale. Consequently, the effects of
viscosity may be neglected or confined to thin boundary layers. The bulk of the flow
may then be treated as inviscid but made up of vortical and irrotational regions. Well-
known examples of such flows are boundary layers, jets and wakes. Other examples
include flows with trailing vortices or turbulent boundary layers with evolving patches
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of vorticity. Owing to the interaction between the various flow regions, such flows are
almost always unsteady.

The method of contour dynamics, introduced by Zabusky, Hughes & Roberts
(1979), provides a means to investigate the evolution of inviscid flows with regions
of vorticity. This method assumes a piecewise constant vorticity distribution and
numerically calculates the Lagrangian evolution of the interfaces separating the
various regions of vorticity. Contour dynamics has been extended by Dritschel (1988a)
to enable the long-time simulation of regions of uniform vorticity and the cascade
to fine scales. It is a computationally efficient means for studying inviscid flows
because it maps the two-dimensional Euler equations to a one-dimensional Lagrangian
formulation along the contours. It has also been used to study boundary layer flows
(Pullin 1981; Stern & Pratt 1985; Jimenez & Orlandi 1993), where it was found that
small-amplitude disturbances propagate as dispersive waves and that finite-amplitude
disturbances exhibit nonlinear steepening and overturning that result in the ejection
of thin filaments of vorticity and the entrainment of irrotational flow.

Models involving the interaction of a point vortex with an interface separating two
regions of constant vorticity have been studied for geophysical applications (Stern &
Flierl 1987; Bell 1990). For such geometries (in contrast to the wall-bounded layer
studied here) the interfacial (linear) waves are non-dispersive. These studies showed
that when the point vortex moves with a speed that coincides with the phase speed of
the interfacial waves a resonant interaction occurs resulting in a sinusoidal wavetrain
upstream of the point vortex. The effect of this wavetrain acts to attract (repel) the
vortex toward (away from) the interface.

In this paper, we study the mutual interaction of a point vortex with a wall-
bounded layer of constant vorticity. This model problem is motivated by observations
that boundary layer interactions with localized patches of vorticity play a major
role in bursting and ejection phenomena (Doligalski, Smith & Walker 1994). The
paper aims at determining the physical processes underlying vortex–boundary layer
interaction which are important for characterizing the conditions under which the
transition from a quasi-steady laminar flow to a highly unsteady flow occurs.

Boundary layer theory has been used to investigate vortex–boundary layer interac-
tions (Walker 1978; Peridier, Smith & Walker 1991). It has been demonstrated that
the process of boundary layer ejection can be initiated by a local concentration of
vorticity which then results in a rapidly rising filament of boundary layer fluid that
ultimately interacts strongly with the external flow. In addition, these models have
verified the hypothesis (Sears & Telionis 1975) that a finite-time singularity occurs in
the boundary layer equations when the interaction between the point vortex and the
boundary layer becomes strong (Van Dommelen & Shen 1980; Peridier et al. 1991).

The contour dynamics model we are presenting is computationally efficient for
high-Reynolds-number flows and circumvents the difficulty of the breakdown of the
boundary layer equations when the interaction between the point vortex and the layer
become strong. The present model does not break down when the vortex layer is
ejected away from the wall and the phenomena of wave breaking and rollup that
result in multi-valued deformations of the contour pose no difficulty. However, the
model does not account for the vorticity production that occurs over time near the
wall. Consequently, the results presented here are useful at high Reynolds number,
when the boundary is being deformed quickly in comparison with the viscous time
scale; otherwise, the effects of vorticity produced at the wall may overwhelm the
effects of the point vortex. Section 6 discusses this criterion.

The aims of this work are to (i) describe the mutual interaction of the point
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vortex and the vortex layer in terms of the evolution of the interface and the
trajectory of the point vortex and (ii) identify the various physical processes involved
in the interaction between a point vortex and a wall-bounded vortex layer. We are
particularly interested in the conditions under which a transition to sustained unsteady
flow occurs as opposed to a transient period of unsteady interaction. In general, this
problem is nonlinear and must be solved numerically. However, for certain asymptotic
cases linear theories are developed and analytical solutions obtained. These provide
insight into the physical processes and may describe the preliminary stages of the
onset of nonlinear behaviour. It should be pointed out that in certain cases our
linearized solutions account for the effect of the layer on the motion of the vortex,
which could be essential for determining the long-term behaviour of the system and
its transition from linear to nonlinear behaviour. In particular, we find that for a weak
vortex placed inside the layer the vertical displacement of the vortex acts to modulate
the wavelength and amplitude of the wavetrain. When the vortex is attracted to the
interface, steepening and growth of disturbances directly above the vortex occurs.

The problem depends on two parameters: the vortex strength, Γ̃ , and the initial
y-coordinate, Y (0), of the point vortex (see §3.1). These two parameters indicate the
strength of the mutual interaction between the point vortex and the vortex layer
and thus determine the type of behaviour seen, such as a dispersive wave, modulated
wavetrain or ejection. The horizontal speed of the vortex, cv , is often a useful indicator
of the type of linear interaction that will occur. As we will see, there is a range of
speeds for which a resonant interaction between the point vortex and the vortex
layer is possible. For vortices translating much slower than those which are resonant,
dispersive waves may occur; for vortices which are much faster, steady compact waves
of non-changing form are possible.

In §2, we present the formulation of our model. Section 3 presents the linear analysis
for three cases. For a weak point vortex lying above a vortex layer, a uniformly valid
asymptotic solution is found which consists of a travelling wave plus a transient
which disperses. In the case where the vortex is weak and lies within the vortex layer,
it is mainly convected by the unperturbed flow, cv = O(1). Thus, when 0 < cv < 1, a
resonant interaction occurs between the point vortex and that interfacial wave whose
phase speed coincides with the vortex speed. Finally, in §3.5 we consider the case of a
point vortex placed very close to the wall and whose strength is such that the speed
of the point vortex is much larger than the phase speed of the interfacial waves,
cv�1. In this case, a non-dispersive wave is formed which propagates downstream in
tandem with the point vortex and leaves dispersive waves far behind it. The amplitude
of these disturbances is found to be independent of the strength of the vortex. In §4,
we use conservation of x-momentum to obtain bounds on the vertical displacement
of the vortex in terms of the norm of the interfacial displacement. The vortex acts
to transfer momentum to the interface, while the interface then both transfers the
momentum back to the vortex, thereby drawing the vortex towards or away from the
interface, and carries it downstream via dispersive waves (see Bell 1990). In §5, we
present numerical results for the cases studied analytically in §3 and for the transition
to weakly and strongly nonlinear behaviour where these analytical solutions break
down. In §6, we summarize our work and present our conclusions.

2. Formulation
We consider a two-dimensional inviscid incompressible flow bounded by a wall, see

figure 1. The flow is divided into two regions: an inner region D+ of constant vorticity
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Figure 1. A schematic of the geometry in dimensionless variables in a coordinate system moving
with the uniform free-stream velocity. A vortex of circulation Γ̃ is located a distance Y (t) above
the wall. The vortex is initially located at Y (0) > H0(x) but it can also be placed within the vortex
layer Y (0) < H0(x). In this coordinate system, the wall is moving to the right and the free-stream
velocity is zero. As the flow field evolves with time, the vortical fluid is contained within the region
D+ which is bounded by a curve C consisting of the interface y = H(x, t), the wall y = 0 and closed
at x = ±∞. The region D− contains irrotational flow.

ω adjacent to the wall, and an outer region D− of irrotational flow extending to
infinity with a free-stream velocity U. The two regions are separated by the interface
located at y = H(x, t). The vortex layer extends upstream to −∞ and downstream to
+∞ where it has constant thickness H∞, and thus ω = U/H∞.

We consider a frame of reference moving with the free-stream velocity U, and a
coordinate system (x, y) centred at the wall with the x-axis parallel to the wall and
the y-axis perpendicular to it. We non-dimensionalize all lengths with respect to H∞,
and time with respect to H∞/U. In this frame of reference the fluid velocity vanishes
as y →∞ and the wall, located at y = 0, appears to be moving to the right.

Using a complex representation, the complex conjugate of the velocity induced by
the vortex layer is given by

u− iv =
1

2πi

∫ ∫
D+

[
1

z − z′ −
1

z − z̄′

]
dA′, (2.1)

where z′ represents the source point and z the observation point. We apply the area
theorem (Milne-Thomson 1968, p. 133) to transform the double integral over the area
D+ to a line integral over the contour C enclosing the region D+ (see also Pullin
1981). This yields

u− iv =
1

2πi

[∮
C

y′ − y
z′ − z dz′ −

∮
C

y′ − y
z̄′ − z dz̄′

]
, (2.2)

where the direction of integration is chosen to be counterclockwise. Note that the
assumption that the layer is of finite thickness 1 as |x| → ∞ ensures that the velocity
field is finite. The expression for the velocity (2.2) is particularly suitable for accurate
numerical quadrature because it no longer involves a singular kernel. Moreover, these
integrals can be evaluated analytically for a vortex layer of constant thickness. Thus
the numerical quadrature can be limited to the perturbed part of the contour, resulting
in a significant saving of computation time.

Any potential field which satisfies the boundary conditions can be added to (2.2).
In particular, we are interested in the mutual interaction of the vortex layer and a
point vortex of circulation Γ̃ , as illustrated in figure 1. If the position of the point
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vortex is (X(t), Y (t)) then the total velocity is given by

u− iv =
1

2πi

[∮
C

y′ − y
z′ − z dz′ −

∮
C

y′ − y
z̄′ − z dz̄′

]
+

Γ̃

2πi

(
1

z − Z −
1

z − Z̄

)
, (2.3)

where Z = X(t)+iY (t) and the non-dimensional parameter Γ̃ = Γ/(ωH2
∞) represents

the ratio of the strength of the point vortex non-dimensionalized with respect to the
vorticity and unperturbed layer thickness. We further note that (2.3) can be written
as

u− iv =
1

2πi

∮
C

(y′ − 1)

z′ − z dz′ −
∮
C

(y′ − 1)

z̄′ − z dz̄′

+

{
1− y if z ∈ D+

0 if z ∈ D−
+

Γ̃

2πi

(
1

z − Z −
1

z − Z̄

)
. (2.4)

The motion of the point vortex depends upon its interaction with the wall and the
vortex layer, thus its complex-conjugate velocity is given by

Xt − iYt =
dZ̄

dt
=

1

2πi

[∮
C

y′ − Y
z′ − Z dz′ −

∮
C

y′ − Y
z̄′ − Z dz̄′

]
+

Γ̃

4πY
. (2.5)

Finally, we must specify the initial shape of the interface, y = H(x, 0) = H0(x) and the
kinematic condition† that a fluid particle on the interface will remain on the interface,

v =
∂H

∂t
+ u

∂H

∂x
at y = H(x, t). (2.6)

The problem of mutual interaction between a wall-bounded vortex layer and a
point vortex is thus formulated in terms of an initial value problem involving three
coupled equations (2.3), (2.5), (2.6). This initial value problem defining the coupled
motions of the interface and the point vortex is nonlinear, in general, and must
be solved numerically. However, since a variety of phenomena such as dispersion,
steepening, rollup and ejection of the vortex layer have been observed numerically, it
is useful to determine analytical solutions for asymptotic cases to interpret the physics
underlying these various phenomena. With this in mind, before presenting the results
of the fully nonlinear simulations, we first investigate, in §3, some limiting cases where
the equations of motion are linear and so are soluble analytically.

3. The linear interaction of a vortex layer with a point vortex
In this section, we assume that the interface undergoes only small departures from

its initially unperturbed position (y = 1) and that the mutual interaction between the
vortex and the interface is weak. These restrictions allow us to linearize the problem
and obtain analytical results. First, we will linearize the velocity fields (2.3), (2.5)
and the interface condition (2.6) to derive the dispersion relation. Then we consider
two cases where the vortex is weak (Γ̃ �1) and where the forcing lies either outside
(Y > 1) or inside (Y < 1) the vortex layer. Finally, we will consider the case where the
vortex is placed close to the wall and propagates downstream with a large horizontal
velocity, cv�1 (those vortices whose speed cv�1 (cv�1) will often be referred to as

† Note that (2.6) will have a different form when the interface becomes multi-valued. In this
case one can parameterize x = x(s, t) and y = y(s, t) as functions of some parameter s, for example
arclength, such that x and y are single-valued functions.
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‘fast’ (‘slow’)). In this case, the interaction of the vortex with the wall dominates the
motion of the vortex. Unlike the previous two cases, the linearized velocity field in
(3.5) does not apply since the velocity induced by the vortex on the interface is large.
However, because the horizontal vortex speed is so great, the effect of the vortex is
felt for only a fleeting interval, leaving small disturbances on the interface. In this
case, the equations describing the velocity field need to be rescaled as is shown in §3.5.

3.1. The linearized velocity field and kinematic condition

We consider the interaction of a vortex layer with a weak point vortex initially located
at (0,Y(0)) where it may be placed above the interface (Y (0) > 1) or inside the vortex
layer (Y (0) < 1). We linearize about an initially flat interface,

H(x, t) = 1 + εη(x, t), (3.1)

where the parameter, 0 < ε�1. Furthermore, we assume Γ̃ = εΓ ∗, with |Γ ∗| = O(1).
We expand both the velocity field and the coordinate location of the point vortex as

u− iv = (u− iv)0 + ε(u− iv)1 + · · · (3.2)

and

(X(t), Y (t)) = (X0(t), Y0(t)) + ε(X1(t), Y1(t)) + · · · . (3.3)

Substituting (3.1–3.3) into (2.4) we obtain

(u− iv)0 =

{
1− y if z ∈ D+

0 if z ∈ D−
(3.4)

and

(u− iv)1 = − 1

2πi

∫ ∞
−∞

η(x′, t)

(x′ − x) + i(1− y)
dx′ +

1

2πi

∫ ∞
−∞

η(x′, t)

(x′ − x)− i(1 + y)
dx′

+
Γ ∗

2πi

[
1

(x−X0(t)) + i(y − Y0(t))
− 1

(x−X0(t)) + i(y + Y0(t))

]
. (3.5)

We introduce the shorthand Y0(0) = d where we assume that d = O(1) and |d− 1| =
O(1). To leading order, the vertical velocity of the vortex is zero and its horizontal
velocity, cv , is constant,

cv =

{
0 if d > 1
1− d if d < 1.

(3.6)

As a result, X0(t) = cvt and Y0(t) = d and therefore, the velocity field induced by
the vortex is independent of the evolution of the interface. Note that (3.6) is not
uniformly valid as t becomes large. The range of time for which it is valid is discussed
in §3.3.3.

The linearized kinematic condition reduces to

ηt = v1. (3.7)

Thus, to first order, only the vertical component of the velocity contributes to the
evolution of the interface. The vertical velocity at the interface, v1, is obtained from
(3.5) by taking y = 1 and treating the first integral as a Cauchy principal value.
Substituting the expression for v1 into (3.7) and taking the Fourier transform

F{η(x, t)} = η̂(k, t) =
1

2π

∫ ∞
−∞
η(x, t)e−ikxdx, (3.8)



The interaction of a point vortex with a vortex layer 175

1.0

0

–1.0
–6 –3 0 3 6

c
c

σ

σ

Figure 2. A plot of the dispersion relation and the phase velocity where σ is the angular frequency,
c is the phase velocity and k is the wavenumber. Note that the frequency is antisymmetric with
respect to k and the phase velocity is symmetric with respect to k.

we find

dη̂

dt
= −ie−|k| sinh(k)η̂ − i

Γ ∗

2π

{
e−d|k| sinh(k)e−ikcvt if d > 1
e−|k| sinh(kd)e−ikcvt if d < 1.

(3.9)

3.2. Dispersion relation

Since the point-vortex forcing is independent of the evolution of the interface we can
obtain the dispersion relation for this problem by examining sinusoidal disturbances
to the interface in the absence of forcing. This dispersion relation is readily obtained
by setting Γ̃ = 0 in (3.9) and substituting solutions of the form η̂(k, t) = η̃(k)e−iσt,
where σ is the angular frequency. This yields the well-known (Rayleigh 1887; Pullin
1981; Stern & Pratt 1985) dispersion relation,

σ(k) = e−|k| sinh(k), (3.10)

shown in figure 2.
From (3.10) we find the phase velocity

c = e−|k|
sinh(k)

k
(3.11)

and the group velocity

cg = e−2|k|. (3.12)

In the long-wave limit the phase velocity reduces to

c = 1− |k|+ · · · (3.13)

and in the short-wave limit

c =
1

2|k| . (3.14)

As a result, linear theory indicates that small disturbances to the interface will
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propagate as dispersive waves where disturbances of longer wavelength will propagate
faster than disturbances of short wavelength. Note that the dispersive nature of the
wave is caused by the presence of the wall; without the wall the frequency would be
constant, σ = 1/2.

3.3. Weak vortex outside the layer

We consider the response of the vortex layer to a weak point vortex initially located
at (0, d) which is outside (d > 1) the vortex layer. In this limit, cv = 0 and for t not
too large, (3.9) becomes

dη̂

dt
= −i

[
e−|k|η̂ +

Γ ∗

2π
e−d|k|

]
sinh(k). (3.15)

This has the solution

η̂ = c1(k)e
−i[sinh(k)e−|k|]t − Γ ∗

2π
e−(d−1)|k|. (3.16)

The first term is the homogeneous solution to (3.9) and corresponds to a dispersive
wave that is propagating downstream due solely to the effect of the vortex layer. The
second term corresponds to the particular solution and is a time-independent solution
that results from the forcing of the point vortex. Thus, the effect of the point vortex
is to form a steady solution directly below it, while the effect of the vortex layer is to
create dispersive waves on the interface. The relative magnitude of these two effects
is measured by the non-dimensional parameter Γ ∗.

3.3.1. Interface response

The interface response is obtained by finding the inverse Fourier transform of η̂ in
(3.16). To this end, we first note that the steady part of (3.9) yields

S̄ (x) = −Γ
∗

π

[
(d− 1)

(d− 1)2 + x2

]
. (3.17)

The form of this solution indicates that a vortex of positive (negative) vorticity will
create a steady, trough (hump) at the interface. To complete the initial value problem
we apply the initial condition, η0 = η(x, 0), whose Fourier transform is η̂(k, 0), to
determine c1(k) in (3.16). This gives

c1(k) = η̂0 +
Γ ∗

2π
e−|k|(d−1). (3.18)

From this, the full linear response of the vortex layer to the point vortex can be
written in terms of η̂0 and yields

η(x, t) =

∫ ∞
−∞
η̂0e

ik(x−ct)dk +

∫ ∞
−∞

Γ ∗

2π
e−|k|(d−1)eik(x−ct)dk + S̄ (x), (3.19)

where we have assumed that η̂0 decays for high wavenumbers so that the first integral
converges. If we examine (3.19), we find that it is the sum of three contributions.
One is the steady trough (hump) solution which represents the long-time effect of
the vortex forcing. Another is a time-dependent solution which initially cancels the
steady solution but then propagates away dispersively. The third contribution is due
to the initial shape of the interface.
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3.3.2. The long-time behaviour of the interface

To determine the long-time evolution of the system we examine the evolution of
the interface for t large. We first examine the behaviour of the time-dependent part
of the solution (3.19) due to the vortex forcing. This is equivalent to the interface
being initially flat, η̂0 = 0. For large t, there are three leading-order contributions
to the integrals in (3.19). Two come from k → 0 and k → ∞, which correspond to
the long- and short-wave contributions. The third contribution comes from the point
of stationary phase, where k = k̃ such that cg = x/t. Note that when x = O(1),

cg → 0 and k̃ → ∞. Thus the contribution of the stationary phase point is the same
as that of the short-wave endpoint. On the other hand, for large x such that x = O(t),
k̃ = − 1

2
ln(x/t) which is finite.

For large t, the interface response in (3.19) can be written in terms of a gamma
function (the details of which are given in the Appendix). Equations (A 6) and (A 7)
show that the long-time contribution to the interface disturbance comes mainly from
the short- and long-wave limits. If the vortex is not too far from the interface
(1 < d < 5) the leading contribution to the disturbance comes from short waves of
O(1/t(d−1)/2) as is shown in the expression

η(x, t) ∼ Γ ∗

2π

[
2(d−1)/2

t(d−1)/2
eπx/4Re

{
exp i

[
−t
2

+
x

2
ln

(
t

2

)
+
π

4
(d− 1)

]
Γ

(
(d− 1− ix)

2

)}]
+ S̄ (x), (3.20)

while the long-wave contribution is O(1/t2). On the other hand, when the vortex is
located far from the interface (d > 5) the long-term contribution is mainly due to the
long waves and decays like 1/t2.

The dependence of the rate of decay of the transient short-wave solution (3.20) on
the distance of the point vortex above the interface indicates the importance of the
interaction of the point vortex with the short waves on the interface. Thus when the
point vortex is initially placed close to the interface, some short-wave contributions
will subsist for long times and will appear as standing waves with a frequency close
to 1/2 and it is these short waves which will interact strongly with the vortex.

Asymptotic solutions can be obtained for both small and large x. Expanding the
complex Gamma function for small argument (see Gradshteyn & Ryzhik 1994), i.e.
((d− 3)2 + x2) < 4, we find

η(x, t) ∼ Γ ∗

2π

2(d−1)/2

t(d−1)/2
cos

[
t

2
−
(
π(d− 1)

4
+
x

2
ln

(
t

2

))]
+ S̄ (x). (3.21)

This solution indicates that for the region of the interface just below the vortex a
nearly stationary decaying oscillation with a frequency of 1/2 takes place. Thus we
can conclude that for very long times only the steady solution, S̄ (x), will remain.

For large x = O(t), we find

η(x, t) ∼ Γ ∗

2π1/2

(x/t)(d−1)/2 cos[ 1
2
(t− x) + 1

2
x ln(x/t)− 1

4
π]

x1/2
. (3.22)

This solution indicates that far downstream of the origin very long waves will decay
like 1/x1/2.

We now consider the behaviour of the time-dependent solution resulting from
an initial disturbance to the interface specified by η0(k). We assume that η̂0 decays
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exponentially as |k| → ∞, i.e. η̂0 = e−γ|k|/γ where γ > 0, corresponding to an initial
distribution of the form η0 = 1/(x2 + γ2). In this case, using (A 7) we see that

η(x, t) ∼ e−it/2

tγ/2
. (3.23)

This example illustrates the possibility that the long-term behaviour of the transient
solution could be dominated either by the form of the initial disturbance to the
interface or by the presence of the vortex depending upon the value of γ and d as
can be seen by comparing (3.20) and (3.23). In all cases the transient solution will
have an asymptotic frequency of 1/2 corresponding to the limit as the wavelength
of the disturbance vanishes. This result is not surprising since we are dealing with a
dispersive system where the long waves propagate faster than the short waves.

The aforementioned analysis of the interface motion suggests that the slow time-
dependent motion of the point vortex may also exhibit a similar decaying oscillatory
behaviour with a frequency of 1/2. In addition, for long times the vortex will have
drifted an order one distance and thus must be accounted for in the solution. In the
next section, we examine the large-time motion of the vortex and extend the validity
of the solution to all t.

3.3.3. The motion of the point vortex

In this section, we determine the motion of the point vortex for long times. The
velocity of the point vortex can be obtained from (3.5) and (3.6) and is expressed as

X1t − iY1t =
1

2πi

{
−
∫ ∞
−∞

η(x′, t)

x′ − i(d− 1)
dx′ +

∫ ∞
−∞

η(x′, t)

x′ − i(d+ 1)
dx′
}

+
Γ ∗

4πd
+ O(ε2).

(3.24)

Substituting the time-dependent part of the solution of (3.19) with η̂0(k, t) = 0 into
(3.24) and applying the residue theorem, we obtain

X
(u)
1t

= −Γ
∗

π

∫ ∞
0

e−k(2d−1) sinh(k) cos(σt)dk (3.25)

and

Y
(u)

1t
= −Γ

∗

π

∫ ∞
0

e−k(2d−1) sinh(k) sin(σt)dk, (3.26)

where the superscript (u) denotes the unsteady contribution. Since the integrand
vanishes for small and large k, the contribution of the interfacial waves to the vortex
velocity comes mainly from wavelengths in the mid-range. The distance travelled by
the vortex due to the transient can be obtained by integrating (3.25) and (3.26) with
respect to t,

X
(u)
1 = −Γ

∗

π
Im{e−it/2J(d− 2, t)} (3.27)

and

Y
(u)

1 = − Γ ∗

2π(d− 1)
+
Γ ∗

π
Re{e−it/2J(d− 2, t)}, (3.28)

where we have used the dispersion relation given by (3.10) to put the integrals into a
form such that the results of the Appendix can be applied. The expression for J(d−2, t)
is given by (A 7) in the Appendix. For 1 < d < 2 and large t the leading-order terms
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of J(d− 2, t) are of the form

X
(u)
1 = −Γ

∗

2π

2(d−1)Γ(d− 1)

t(d−1)
sin[(t− π(d− 1))/2] + O(ε/t) (3.29)

and

Y
(u)

1 = − Γ ∗

2π(d− 1)
+
Γ ∗

2π

2(d−1)Γ(d− 1)

t(d−1)
cos[(t− π(d− 1))/2] + O(ε/t), (3.30)

where in the above expressions the Gamma function Γ should not be confused with
the strength of the point vortex Γ ∗. From the results of the previous section, we
would expect that the decay of the transient would be slower when the point vortex
is initially placed closer to the layer, and indeed this is the case. Note also that the
contribution to the horizontal position of the point vortex vanishes with time leaving
no net displacement while the vertical displacement of the vortex tends to a constant
value.

These solutions corroborate the findings in the previous section that when the point
vortex is initially placed close to the layer, the short-wave interaction between the
vortex and the interface is stronger. Moreover, the time-dependent part of the vortex
motion decays like O(1/t(d−1)) which is faster than the decay of the time-dependent
part of the interface solution, see (3.20).

We now account for the effect of the steady component of the vortex velocity
(X(s)

1t
, Y

(s)
1t

). Examining (3.24) we see that one contribution comes from the term

εΓ ∗/(4πd) and that the second contribution, S̄ (x), enters through the steady part of
η. Since the steady part of η is an even function, it induces a velocity only in the
horizontal direction. As a result, the displacement of the vortex is

X
(s)
1 =

εΓ ∗

4π(d− 1)
t, (3.31)

Y
(s)

1 = 0. (3.32)

Finally, then, considering both transient and steady contributions to the displacement
from the initial condition (0, d), we find

X(t) = cvΓ t+ O(ε/t) (3.33)

and

Y (t) = d− εΓ ∗

2π(d− 1)
+ O(ε/t), (3.34)

where cvΓ = εΓ ∗/(4π(d−1)). This shows that because the effect of the time-dependent
part of the interface decays with time, the point vortex will move with a uniform
horizontal velocity due solely to the image vortex and the steady part of the solution,
S̄ (x). The vortex will also move from its original height to that given in (3.34) and
then weakly oscillate about this value. Moreover, (3.33) and (3.34) show that the
expansion for the vortex position is no longer valid for t = O(1/ε). This suggests an
outer expansion is needed for large t. Introducing the time, T = εt and CvΓ = cvΓ /ε,
the last expression in (3.5) becomes

Γ ∗

2πi

[
1

(x− CvΓT ) + i(y − d) −
1

(x− CvΓT )− i(y + d)

]
. (3.35)
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Repeating the analysis in §§3.1 and 3.3 yields the outer solution which accounts for
the vortex motion,

S(x, T ) = −εΓ
∗

π

(d− 1)

(d− 1)2 + (x− CvΓT )2
. (3.36)

These results show that small-amplitude disturbances will not become large owing to the
long-time drift of the point vortex towards the layer and that the vortex will approach
an equilibrium state for large times. Moreover, as the effect of the transient decays,
the interface will asymptotically evolve to a steady state in a reference frame moving
with the vortex. Thus, a uniformly valid solution for any t can be derived:

η(x, t, T ) =

∫ ∞
−∞

{
η̂0 +

Γ ∗

2π
e−|k|(d−1)

}
eik(x−ct)dk + S(x, T ). (3.37)

3.4. Weak vortex inside the layer

Here we investigate the linear response of the interface to a weak point vortex located
at (0, d) which is within (d < 1) the vortex layer. In this case, the point vortex is being
convected by the vortex layer at a speed which is O(1) while the velocity induced
upon it by the perturbed vortex layer is O(ε). This also suggests that for t not too
large, the vertical motion of the vortex is O(ε), and thus the vortex is convected at
a constant height, cv ∼ 1 − d. Recall that the phase speed is 0 < c(k) < 1. So, when
the velocity of the point vortex is also 0 < cv < 1, there is a Fourier mode with
wavenumber k̃ travelling at the same speed as the point vortex, c(k̃) = cv . This mode
will be excited, resulting in a strong resonant interaction. Similar analyses carried
out by Stern & Flierl (1987) and Bell (1990) without the presence of a wall found
that a spreading monochromatic wavetrain forms upstream of the vortex, and that
this wave attracts the vortex toward or repels the vortex away from the interface
depending upon whether Γ̃ is positive or negative.

In order to avoid the secular behaviour associated with resonance, we introduce
damping in our system. Thus (3.9) becomes

dη̂

dt
+ [ie−|k| sinh(k) + α]η̂ = −i

Γ ∗

2π
e−ikcvte−|k| sinh(kd), (3.38)

where α > 0 is a small damping parameter which adds dissipation to the system. Our
solution will then be taken as the limit of the damped case where the dissipation
coefficient, α, approaches zero. This technique (see Stakgold 1967, pp. 259–261) is
referred to as the principle of limiting absorption.

The transient homogeneous solution to (3.38) is

ηH (x, t) = 2Re

{∫ ∞
0

[
η̂0 −

Γ ∗

2π

e−|k| sinh(kd)

k[cv − c(k)] + iα

]
ei(kx−σt)−αtdk

}
. (3.39)

The response to the forcing also differs from that of the steady solution found in
(3.9). Instead, we obtain

ηp(x, t) = −Γ
∗

π
Re

{∫ ∞
0

eik(x−cvt) e−k sinh(kd)

k[c(k)− cv]− iα
dk

}
, (3.40)

where Re stands for taking the real part of the expression. Examination of figure 2
indicates that the equation c(k) = cv has only one solution for k > 0, which we denote
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k̃. For small α the integrands in (3.39) and (3.40) have one pole

k = k̃ − iα

cv − cg(k̃)
, α→ 0. (3.41)

Note that since c(k) > cg(k) for any k 6= 0, cv − cg(k̃) > 0. Thus, by adding a small
amount of dissipation to the problem we push the pole off the real axis and can
obtain a unique solution in the limit that this dissipation goes to zero. The integrals
in (3.39) and (3.40) are evaluated using the residue theorem, and we find that the
steady response is different upstream, 0 < x < cvt, than downstream, x > cvt, of the
vortex. For example, for x− cvt < 0 the particular solution to (3.40) is

ηp(x, t) = 2Γ ∗
e−k̃ sinh(k̃d)

cv − cg
sin[k̃(x− cvt)]−

Γ ∗

π
Re

{∫ ∞
0

ieik sin(kd)ek(x−cvt)

kcv − eik sin(k)
dk

}
,

(3.42)

whereas for x− cvt > 0

ηp(x, t) =
Γ ∗

π
Re

{∫ ∞
0

ie−ik sin(kd)e−k(x−cvt)

kcv − e−ik sin(k)
dk

}
. (3.43)

The first term in (3.42) corresponds to a sinusoidal wave propagating with speed
cv . The second term decays with distance from the point vortex. Asymptotically
expanding the integrals in (3.42) and (3.43) for |x−cvt|�1 we find that their behaviour
to leading order is like O(|x − cvt|−2). Thus, far upstream of the point vortex one
observes a monochromatic wavetrain, while far downstream of the vortex the interface
is quiescent. Similarly, we can evaluate the homogeneous solution where a steady
response plus a transient solution is obtained for x < 0 and only a transient solution
is obtained for x > t. The full linear response, neglecting the transient, is then

η(x, t) = 2Γ ∗
e−k̃ sinh(k̃d)

cv − cg
sin[k̃(x− cvt)]U(t− x/cv)U(x), (3.44)

where U(t) is the Heaviside function. The solution of (3.44) corresponds to the
monochromatic wavetrain of wavenumber k̃ which forms upstream but not down-
stream of the point vortex. The wavetrain extends over an increasing extent of the
interface, from near x = 0 to x = cvt. This solution is valid as long as the vertical
motion of the point vortex is not O(1) for long times. In §4, however, we show that
for large t the vertical motion of the vortex due to the sinusoidal wavetrain becomes
significant and in §5 we show numerically that a transition from linear to nonlinear
behaviour occurs over long times.

3.5. The fast point vortex lying close to the wall

In this section, we consider the effect of a point vortex which is initially placed very
close to the wall (Y (0) = O(ε1/2)) where 0 < ε�1 and which propagates quickly
downstream (cv = Γ̃ /(4πY (0))�1). This limiting case of strong vortex interaction
with the wall differs from the two cases considered above in that we allow the velocity
field induced by the point vortex on the interface to be large. We will show that
in this case the amplitude of the interface disturbance is independent of the vortex
strength. Moreover, because the vortex propagates quickly the motion of the vortex
due to the layer is negligible, as is shown in §4, and the expansion for the vortex
position is uniformly valid in time.
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We introduce

Y (0) = ε1/2d∗, (3.45)

Γ̃ = εmΓ ∗ (3.46)

and

cv = ε(m−1/2)c∗v , (3.47)

where d∗, Γ ∗, and c∗v are O(1), and −∞ < m < 1/2. We assume that the interface is
initially either weakly perturbed or unperturbed so that for at least small times the
velocity induced on the interface is mainly due to the vortex. We focus our attention
on the neighbourhood of the vortex and we introduce the variable ξ = x− cvt. This
is equivalent to a frame of reference moving with the speed of the vortex, cv . As a
result, the velocity field in (2.3) can be expressed as

u− iv =
ε(1/2+m)dΓ ∗

π(ξ + iy)2
. (3.48)

This suggests that the velocity field induced on the interface is O(ε(1/2+m)). Taking the
real and imaginary parts of (3.48) we find

u∗ =
Γ ∗d∗(ξ2 − y2)

π(ξ2 + y2)2
(3.49)

and

v∗ =
2Γ ∗d∗yξ

π(ξ2 + y2)2
, (3.50)

where (u, v) = ε(1/2+m)(u∗, v∗). To leading order the kinematic condition in terms of the
similarity variable ξ is

v∗ = −c
∗
v

ε

∂H

∂ξ
. (3.51)

This suggests that H(x, t) = 1 + εη(x, t) and implies that disturbances to the interface
which are moving with the vortex are O(ε). The solution is obtained by integrating
(3.51), yielding

η(x, t) = 4d∗
2

(
1

ξ2 + 1

)
. (3.52)

This solution indicates that an O(ε) interface response occurs when Y ∼ O(ε1/2).
Note that the amplitude of the disturbance is independent of the strength of the

vortex and depends solely upon the proximity of the point vortex to the wall. This can
be interpreted by a simple dimensional argument. When the point vortex is close to
the wall, the vortex and its image induce a rate of deformation on the interface which
is proportional to (2Γd)/H2

∞. However, the duration of the forcing on a particular
sector of the interface is proportional to (dH∞)/Γ . The deformation of the interface
is the product of the induced velocity, (2Γd)/H2

∞, and the duration, (dH∞)/Γ , that
the velocity acts on the interface. Hence, the amplitude of disturbances on the vortex
layer depends solely upon how close the point vortex is to the wall.

In addition to (3.52) there is also a transient disturbance. Analysis of the velocity
field for |ξ|�1 shows that the velocity induced by the vortex is O(ε(3/2−m)) and so
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the contribution of the vortex layer (the homogeneous solution, as discussed in §3)
becomes dominant. As a result, after the vortex has passed, dispersive transient waves
remain. We note that there must be some waves that remain because the area of the
disturbance described by (3.52) is positive and consequently the area displaced by the
dispersive waves far upstream of the vortex must cancel that propagating in tandem
with the vortex.

We find that two disturbances are created on the interface a non-dispersive wave,
which propagates rapidly in tandem with the point vortex, and a disturbance which
is left behind the vortex and slowly disperses. Moreover, because the vortex is moving
very quickly from the dispersive waves it can be shown that their effect on the motion
of the vortex will be negligible.

4. Conservation of momentum
In the cases studied in the previous two sections, we assumed that disturbances

on the interface do not influence, to leading order, the motion of the point vortex.
We then verified that this assumption was valid for the non-resonant cases (cv�1
and cv�1). In this section, we derive a general relationship between the vertical
displacement of the vortex and the norm of disturbance amplitude on the interface.
We verify the results of the previous sections for the motion of the point vortex and
show that, in the case where the vortex resonates with the interface, the long-time
vertical motion of the vortex is not negligible. Finally, for a small disturbance we
obtain a bound on the vertical motion of the vortex.

Following Bell (1990), we apply conservation of the x-component of momentum to
a region, R2, containing the point vortex and the vortex layer. The momentum (see
Batchelor 1967, pp. 529–530) is defined as

P =

∫
R2

yω dA, (4.1)

where ω is the vorticity, which here (non-dimensionalized) is equal to 1 within the
vortex layer and where we integrate over the perturbed part of the interface (since
the unperturbed interface only adds a constant value to the momentum). Thus, we
write

P = Γ̃Y (t) +

∫ ∞
−∞

∫ H(x,t)

1

y dy dx, (4.2)

where H(x, t) = 1 + η(x, t). Using the invariance of momentum and applying (4.2) we
find

Y (t)− Y (0) = − 1

2Γ̃
(||η||2 − ||ηo||2), (4.3)

where we have assumed that ||η(x, t)||2 =
∫ ∞
−∞(η(x, t))2dx is bounded. This relation

shows that the point vortex transfers momentum to the interface which both transfers
this momentum downstream by forming dispersive waves and transfers it back to the
point vortex resulting in vertical motion. When the interaction between the vortex
and the layer is weak the momentum is carried to the far-field via dispersive waves.
Thus, when eruption occurs we would expect that very little momentum gets carried
away by waves and most of the momentum is transferred back to the vortex resulting
in a strong interaction. Not surprisingly, this relation is unchanged if we neglect the
effect of the wall. We also note that for Γ̃ = 0 we find ||η||2 = ||ηo||2 which gives
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a bound on the growth of an initial disturbance (Dritschel 1988b). Equation (4.3)
allows us to determine the vertical trajectory of the point vortex from the norm of
the interface. Although calculating an exact analytical expression for the interface is
impossible in most cases, we can deduce the direction of the vertical motion of the
point vortex from this expression. For example, if Γ̃ > 0 then the motion of the point
vortex will be downward. Whereas if Γ̃ < 0 then the path of the point vortex will be
upward.

4.1. The linear limit

We consider interface disturbances which are small such that we can decompose the
interface solution into a particular and a homogeneous solution. Assuming a small
disturbance to an initially flat interface, (4.2) becomes

Y (t)− Y (0) = − 1

2Γ̃
(||ηh + ηp||2), (4.4)

where ηh is the homogeneous solution and ηp is the particular solution. For the
travelling wave solutions found in §§3 and 4, ηp = f(x− cvt) and we have

d

dt
||ηp||2 = 0. (4.5)

Observing that ηp(x, 0) = −ηh(x, 0) and applying (4.5) we find ||ηp(ξ)||2 = ||ηh(ξ)||2
where ξ = x − cvt. Applying this result and the Schwarz inequality to (4.4), an
upper bound on the vertical motion of the point vortex due to any small-amplitude
disturbance can be obtained yielding

|Y (t)− Y (0)| 6 2

|Γ̃ |
(||ηp||2). (4.6)

A stronger statement can be made for the cases cv�1 and cv�1 in the limit as
t → ∞. In these cases, the solution due to the point vortex, the particular solution,
and the solution due to the vortex layer, the homogeneous solution, will separate
from one another as t → ∞ (see e.g. figure 10) implying that the cross-product term
on the right-hand side of (4.4) is zero. As a result, in the limit as t→∞

|Y (t)− Y (0)| 6 1

|Γ̃ |
(||ηp||2). (4.7)

For example, using the particular solution (3.36), in §3.3.3, together with the above
result, reproduces the solution (3.34) for the terminal vertical position of the point
vortex.

When the vortex resonates with the interface, 0 < cv < 1, (3.44) shows that an
expanding interval of monochromatic travelling waves is left upstream of the vortex.
Since the norm of η(x, t) grows as the horizontal extent of the waves grow in time,
the displacement of the point vortex from its initial position will grow with time. For
example, if Γ̃ < 0 (Γ̃ > 0) then the vortex will be attracted to (repelled from) the
interface. As a result, for Γ̃ < 0 the disturbances to the interface will grow in time.
However, because the vertical speed of the point vortex is slow compared to the speed
of the interfacial waves the travelling wave solution given in (3.44) can be seen for
O(1) times (see figures 5 and 7). For large t, (4.3) predicts the vortex will move an
O(1) distance and change the character of the solution from linear to nonlinear.
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5. Numerical solutions
The analytical solutions presented in §3 correspond to asymptotic cases wherein

the interface departs slightly from a mean position and the motion of the vortex
is uncoupled, at leading order, from that of the interface. However, the motion of
the interface is coupled to that of the vortex. Such solutions cannot represent the
general evolution of the interface where there is a strong mutual interaction between
the interface and the vortex. In this section, we first compare the linear theories
developed in §3 with the numerical results of the full nonlinear problem. We then
examine certain nonlinear behaviour and interpret a wide array of the observed
phenomena within the context of the linear theories. In addition, we illustrate that
linear behaviour can transition to nonlinear behaviour due to the motion of the point
vortex leading to the ejection of vorticity away from the wall.

To track the time evolution of the position (x(t), y(t)) of Lagrangian particles, (2.3)
and (2.5) must be integrated spatially followed by the temporal integration of

dx/dt = u (5.1)

and

dy/dt = v. (5.2)

The numerical method employed is similar to Pullin (1981, see also Stern & Pratt
1985), except that we consider a finite non-periodic domain subject to the forcing of
a localized point vortex. The spatial integration of (2.3) and (2.5) was carried out
using the trapezoidal rule and the time integration was done using a second-order
Adams–Bashforth predictor-corrector scheme. To significantly save computation time
an analytic solution for the influence of the unperturbed vortex layer is used, leaving
only the perturbed interface to be calculated numerically. The spatial domain was
adjusted such that when an endpoint exceeded the height of the unperturbed interface
by more than 10−6, a point was added to lengthen the computational domain. To
obtain an error estimate we computed the circulation and the x-component of
momentum, both of which should be invariant over time.

5.1. Weak point vortex outside the layer

For a weak point vortex (Γ̃ = 0.05), located outside the layer (X(0) = 0, Y (0) = 2.5),
and an initially flat unperturbed interface, figure 3 shows the interface response at
six times. As expected, the vortex initially exerts a downward force on those points
upstream of the vortex (x < 0) and an upward force on those points downstream
of the vortex (x > 0). Thus, a profile which is nearly antisymmetric about the x-
location of the vortex is initially formed with a negative hump slightly upstream of
the origin (x < 0) and a positive hump slightly downstream of the origin (x > 0).
As time progresses, the magnitudes of these humps increase and reach the level of
the steady solution predicted by the theory. The negative hump corresponding to
the travelling wave maintains its form, while the positive hump disperses with long
waves propagating to the right faster than short waves (see (3.10)). We also note that
although the transient solution decays quickly, O(1/t(d−1)/2), its effects persist over
large distance, x = O(t).

Figure 4(a) shows the vertical displacement of a point vortex for the case described
above. The vortex moves slightly downward and then oscillates about a new steady-
state height which corresponds to the value predicted by (3.34). The oscillations
have a period which can be seen to be nearly 4π, corresponding to a frequency
of 1/2. The amplitude of the oscillations decays corroborating the linear theory,



186 O. V. Atassi, A. J. Bernoff and S. Lichter

1.02

1.00

0.98

y

0 20 40 60

x

t = 63

t = 49

t = 35

t = 21

t = 7

t = 0

Figure 3. The evolution of an initially flat interface subject to the forcing of a point vortex,
Γ̃ = 0.05, which is initially located at X(0) = 0 and Y (0) = 2.5 for six times 0 6 t 6 63. Though the
vortex lies above the interface and is not shown in the figure, see figure 4, its x-location is indicated
by an open triangle. As time evolves the interface forms a steady solution near x = 0 superposed
with dispersive waves where the long waves travel faster downstream than the short waves. Note
that the amplitude of these waves decays as they propagate downstream.
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Figure 4. The position (X(t), Y (t)) of the point vortex for the case shown in figure 3. (a) The vertical
displacement of the point vortex versus time. The vortex initially moves monotonically downward
and then undergoes decaying oscillations of period 4π about a steady-state height. (b) The horizontal
displacement of the point vortex versus time. For time t < 10 the horizontal velocity has a slight
time dependence, but then relaxes to a uniform horizontal velocity given by Γ̃ /(4π(d− 1)).
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which assumes that the leading-order vertical position of the point vortex is time-
independent. Comparing the time-dependent motion of the interface near x = 0 (see
(3.21)) with the time-dependent vertical motion of the vortex in figure 4(a), we see that
both undergo oscillations with a frequency close to 1/2. This implies that a coupling
exists between the short waves and the vortex. This coupling becomes stronger when
the vortex is close to the layer and, eventually, if the vortex is initially placed close
enough to the interface a breakdown in the linear theory will occur.

Figure 4(b) shows the horizontal motion of the point vortex. This motion of the
vortex is transient for short times but then quickly relaxes to the uniform velocity
cv = Γ̃ /(4π(d− 1)).

5.2. Weak point vortex inside the layer

In §3.4 we showed that by linearizing (2.3)–(2.6), with the vortex speed cv fixed,
a sinusoidal monochromatic wavetrain formed upstream of the vortex when the
horizontal velocity of the vortex was equal to the phase velocity of one of the
interfacial waves. In §4, however, we showed that the vertical motion of the vortex
could not be ignored and thus the vortex–interface resonant interaction would result
in a slow breakdown of the monochromatic wavetrain solution. In this subsection,
we present numerical calculations (figures 5–9) of the interface shape and vortex
trajectory when the point vortex lies within the layer of constant vorticity and moves
with a horizontal speed that coincides with the phase velocity of one of the interfacial
waves. We consider three cases and discuss the effect of the motion of the vortex
toward or away from the interface as compared to the linear solution obtained in §3.4.

We first consider a weak positive point vortex (Γ̃ = 0.025) that is placed near the
middle of the vortex layer (X(0), Y (0)) = (0, 0.6). While the linear theory predicts
that a monochromatic wavetrain of constant amplitude will form upstream of the
point vortex where the wavelength of the wavetrain is determined by the condition,
c(k̃) = cv , figure 5 shows that the interface evolves into a wavetrain that is slowly
modulated in both amplitude and wavenumber. Figure 6 shows the movement of
the point vortex as a function of time and as predicted in §5 (Γ̃ > 0) the vortex
moves closer to the wall. As a result, the vortex speed, for large times, increases
to leading order. The linear theory suggests that one effect of the change in the
horizontal vortex speed is to modify the wavenumber which satisfies the resonance
criteria. Thus, as seen in figure 5, the effect of the vertical motion may act not only
to modulate the amplitude of the wavetrain but the wavelength as well. Although
the large displacement of the vortex violates the linear theory, the movement occurs
slowly implying that the linear theory can be applied for O(1) variations from a given
time. Thus we would expect a wavetrain of nearly constant amplitude to form whose
wavelength slowly grows with time. In this case, due to its vertical displacement, the
acceleration of the vortex in the horizontal direction acts to accelerate the growth
in extent of the disturbances over the interface. Since the modulated wavetrain is of
large extent and does not appear to decay with time, the nature of the interaction
may be called ‘global’.

We next consider a weak vortex of negative strength (Γ̃ = −0.025) placed near the
middle of the vortex layer (X(0), Y (0)) = (0, 0.4). In figure 7 we see that for short
times, as for Γ̃ = 0.025 shown in figure 5, a modulated wavetrain begins to form.
However, as is shown in figure 8, the movement of the point vortex is toward the
interface and as a consequence its horizontal velocity decreases. This has the effect of
slowing the expansion of the wavetrain and, as seen in figure 7 for t = 60.0, causing
the envelope of the wavetrain to focus and grow in amplitude.



188 O. V. Atassi, A. J. Bernoff and S. Lichter

1.1

1.0

0.9

y

0 30 50

x

t = 80

t = 60

t = 40

t = 20

t = 0

402010–10

Figure 5. The evolution of an initially flat interface subject to the forcing of a weak point vortex,
Γ̃ = 0.025, which is initially located at X(0) = 0 and Y (0) = 0.6 for five times 0 6 t 6 80.
Though the vortex lies above the interface and is not shown in the figure, see figure 6, its x-location
is indicated by an open triangle. A modulated envelope forms behind the point vortex due to its
resonant interaction with the interface. The extent of the interface which is covered by the expanding
envelope is proportional to time and the speed of the vortex.
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Figure 6. The position (X(t), Y (t)) of the point vortex for the case shown in figure 5. (a) The
vertical displacement of the point vortex versus time. The vortex moves monotonically toward the
wall in time but its vertical speed decreases as it moves further from the interface. (b) The horizontal
displacement of the point vortex versus time. As the vortex moves closer to the wall, its horizontal
speed increases monotonically.
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Figure 7. The evolution of an initially flat interface subject to the forcing of a weak point vortex of
negative strength, Γ̃ = −0.025, which is initially located at X(0) = 0 and Y (0) = 0.4 for five times
0 6 t 6 80. Though the vortex lies above the interface and is not shown in the figure, see figure 8,
its x-location is indicated by an open triangle. A modulated wave packet begins to form due to the
resonant interaction between the point vortex and the interface. However, as time progresses the
envelope of the wavetrain focuses into a narrow region near the front of the wavetrain. The extent
of the interface which is covered by the expanding envelope is proportional to time and the speed
of the vortex.
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Figure 8. The position (X(t), Y (t)) of the point vortex for the case shown in figure 7. (a) The
vertical displacement of the point vortex versus time. The vortex moves monotonically toward the
interface in time. (b) The horizontal displacement of the point vortex versus time. Its horizontal
speed decreases monotonically as it moves upward toward the interface.



190 O. V. Atassi, A. J. Bernoff and S. Lichter

1.4

1.0

0.6

y

0 20
x

t = 22

t =16

t = 8

t = 0

10–10

Figure 9. The evolution of an initially flat interface subject to the forcing of a point vortex of
strength Γ̃ = −0.5, which is initially located at X(0) = 0 and Y (0) = 0.2 for four times 0 6 t 6 22.
The vortex is off the scale of the figure, (X(22), Y (22)) = (12.1, 0.54). The open triangle denotes the
x-location of the point vortex. A modulated wavetrain starts to form due to the resonant interaction
between the point vortex and the interface but because of the upward displacement of the point
vortex and its strength, large-amplitude disturbances form. The disturbance appears as a region of
vorticity which is ejected into the irrotational flow.

In figure 9, we consider a stronger vortex of negative strength (Γ̃ = −0.5) initially
placed closer to the wall (Y (0) = 0.2). In this case, we again see that the vortex drifts
toward the interface, slowing down in the process. However, in this case the amplitude
of the disturbances are large and grow too quickly, due to the motion of the vortex
toward the interface and its O(1) strength, for the slowly modulated wavetrain to
develop. Instead, we see that a large-amplitude narrowing region of vorticity, located
almost directly above the vortex, is ejected into the irrotational flow.

5.3. The fast vortex near the wall

In figure 10 a strong vortex is initially placed close to the wall, Γ̃ = 10.0, (X(0), Y (0)) =
(0, 0.1), so that its velocity is fast. Note the greater extent needed for the x-scale
compared with the previous cases. The figure shows a non-dispersive wave propagating
downstream in conjunction with the vortex and leaving behind it dispersive transient
waves. Initially the dispersive waves are the same amplitude as the non-dispersive
wave but as t becomes large they decay and their amplitude becomes much smaller.
Furthermore, in agreement with the asymptotic theory, the amplitude of the waves
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Figure 10. The evolution of an initially flat interface subject to the forcing of a strong point vortex,
Γ̃ = 10.0, which is initially located at X(0) = 0 and Y (0) = 0.1 for six times 0 6 t 6 24. Note
the greater extent needed for the x-scale compared with the previous cases. A non-dispersive wave
propagates downstream in conjunction with the vortex and leaves behind it dispersive, transient
waves. The vortex is off the scale of the figure and is located directly below the non-dispersive wave.
The open triangle denotes the x-location of the point vortex.

are small despite the strong forcing. The theory predicts that the amplitude of the
non-dispersive disturbance is proportional to 4d2 and this is corroborated by the
numerical solutions shown in figure 10. As in the slow vortex case the solution is
the superposition of the forcing due to the point vortex and dispersive transient
waves. However, in this case, the time-independent solution separates itself from the
dispersive waves because cv is much larger than any c(k).

6. Discussion and conclusions
We have examined the mutual interaction of a point vortex with a wall-bounded

layer of constant vorticity as a model for unsteady vortex–boundary layer interactions.
The point vortex may lie outside the layer of constant vorticity or it may lie within the
layer which then acts to convect it downstream. In the examples presented here, the
vortex layer was initially of uniform thickness. The point vortex acts to deform the
vortex layer while the disturbed layer induces a velocity both on itself, furthering its
deformation, as well as on the point vortex, altering its trajectory. When the motion of
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the point vortex does not depend, to leading order, on the evolution of the interface
and disturbances are small, a linear theory can be derived to describe the motion of
the interface and the point vortex. In this case, a variety of behaviours are shown to
exist which include dispersive waves, monochromatic wavetrains and compact waves
of unchanging form. The horizontal extent of the monochromatic wavetrain increases
at a rate cv resulting in a disturbance of large horizontal extent. Thus despite the
highly localized character of the point vortex it can initiate non-local disturbances.
As the monochromatic wavetrain propagates downstream, the vertical displacement
of the point vortex may become large. This motion violates an assumption of the
linear theory and acts to slowly modulate both the amplitude and wavenumber of
the wavetrain.

For a weak vortex lying outside the layer, a steady solution superposed with a
dispersive disturbance whose amplitude decays in time is observed. In this case,
the long-time solution approaches a steady state. As a result, we can match the
short-time solution, which neglects the motion of the point vortex, to the long-time
solution, which accounts for the motion of the vortex, and obtain a solution for
the interface motion that is uniformly valid (3.37). Furthermore, we see from (3.21)
that the long-time decay of the disturbances near the vortex (x ≈ xv) depends upon
the initial proximity of the vortex to the interface. Also, the amplitude of interfacial
disturbances depends upon the vortex strength relative to the vortex layer, Γ̃ . Thus,
a transition to finite-amplitude disturbances can occur only by either increasing the
strength of the vortex or by moving the initial height of the vortex closer to the
interface. However, it cannot occur because the vortex moves a large distance from
its initial position toward the layer.

A weak vortex propagating inside the layer with speed cv is resonant with the
interfacial waves of speed c(k̃) = cv . As a result, a modulated wavetrain is produced
on the interface whose extent ranges from near x = 0 to x = cvt. The perturbed
interface induces a vertical displacement on the point vortex, causing it to be repelled
from or attracted to the interface. The vertical motion of the point vortex is slow and
so for O(1) times the linear theory remains valid. For long times, however, the point
vortex has moved an O(1) distance and the assumption that the height of the point
vortex is constant is no longer valid. Thus, accounting for the vertical displacement of
the point vortex is important for ascertaining whether the system eventually reaches a
steady state (as in the case of a weak vortex outside the layer) or whether a transition
to another, perhaps nonlinear, time-dependent state occurs. Whether the point vortex
is attracted to or repelled by the interface depends upon the sign of Γ̃ . Recall that in
the frame of reference used here, the undisturbed velocity in the vortex layer increases
linearly from 0 at the interface to 1 at the wall. For Γ̃ > 0, the vortex is attracted
toward the wall and is thus convected at a higher speed which accelerates the rate at
which the wavetrain spreads over the interface. For Γ̃ < 0, the vortex is repelled from
the wall into a level of lower velocity, slowing the vortex and consequently focusing
the interaction into a narrow region. This region grows in amplitude, and so appears
as vortical fluid being ejected into the irrotational fluid above.

We have interpreted the effect of the motion of the weak vortex as enacting a
slow modulation in space and time on the monochromatic wavetrain solution. The
nonlinear Schrödinger (NLS) equation has been derived for the slow modulation of
wavepackets in a wall-bounded layer of constant vorticity (see Balagondar, Maslowe
& Melkonian 1987). Moreover, the NLS equation in some cases is modulationally
unstable and this instability acts to modulate a monochromatic wavetrain until
the modulated envelope grows into a soliton where nonlinearity and dispersion are
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balanced. As a result, it is tempting to suggest the NLS equation, or a modified
version of it containing a forcing term, as a model for the behaviour seen in figures 5,
7 and 9. However, in the present case, the vertical position of the vortex is coupled to
the interface motion and so the velocity field is nonlinear to leading order. As a result,
the relationship (or lack thereof) between the behaviour we have seen numerically
and that of the well-known NLS equation is unclear.

When a strong vortex is placed close to a wall a steady solution moving in tandem
with the point vortex (cv�1) propagates downstream leaving dispersive waves whose
phase speed is 0 < c < 1 far behind. In this case, the terminal state is a compact
wave which appears steady in a reference frame moving with the vortex. Increasing
the strength of the point vortex will increase the rate of growth of disturbances
on the vortex layer; concurrently, a stronger vortex will move faster, reducing the
period during which rapid growth occurs. These antagonistic effects precisely cancel;
consequently, the amplitude of the disturbances are independent of the vortex strength.
The case of a fast vortex was considered in a different geometry in Bernoff, van
Dongen & Lichter (1996). There, the vortex was convected by a shear flow above a
viscous boundary layer. Steady solutions were found when the vortex is convected
at a sufficiently high speed. The results from both Bernoff et al. (1996) and the fast
vortex case considered here share the common feature of possessing a steady solution
which propagates in tandem with the vortex.

The results presented in this work may usefully describe boundary layer phenomena
for which the viscous timescale Tν ∼ d2/ν is small compared with the timescale Tη ∼
d2/Γ for the vortex-induced deformation. Consequently, we require that Tη/Tν ∼
ν/Γ �1. This criterion is equivalent to requiring that the Reynolds number be large.

Our model relies, as well, on the vortex layer being of constant vorticity. Certainly,
more complicated distributions of vorticity will alter the details of the interaction of
the point vortex with the layer, as well as the self-interaction of the layer. However,
we present this simplified model as a means to understand the mechanisms at work
in more complicated cases. For example, as discussed above and in §3.4, the criterion
for sustained unsteady interaction is that the speed of the vortex match the phase
velocity of an interfacial wave. While a more complicated distribution of vorticity
will alter the dispersion relation and hence the phase speeds, the resonance criterion
is expected to remain.

A variety of phenomena, such as dispersive waves and the ejection of vorticity, are
seen in our model that have been observed in boundary layer flows, indicating that
vortex interactions in the presence of a wall may be an important two-dimensional
mechanism for the ejection of vorticity and the breakup of the boundary layer
into small-scale regions of vortical and irrotational flow. We have seen preliminary
numerical evidence for rapid ejection, rollup, entrainment, and the existence of solitary
waves. Moreover, we can study the evolution of these phenomena when the thickness
of the layer becomes large due to a strong interaction between the point vortex and
the interface. A more detailed study of these cases and the parameter regimes for
which they exist is the focus of future work.
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Appendix
The second term on the right-hand side of (3.19) can be expressed in terms of

I = e−it/2

∫ ∞
0

e−k(d−1)ei[kx+e−2kt/2)]dk, (A 1)

where we have substituted the expression for c(k) given by (3.11). If we let u = e−2k ,
then

I = 1
2
e−it/2J(α, t) (A 2)

where

J(α, t) =

∫ 1

0

uαeiut/2du (A 3)

and where α = (d− 3− ix)/2. Note that provided that Re(α) > 0, integration by parts
gives the functional relation

J(α, t) =
eit/2

i(t/2)
− α

i(t/2)
J(α− 1, t). (A 4)

Therefore it suffices to evaluate J(α, t) for −1 < Re(α) < 0, yielding

J(α, t) =
2(α+1)

t(α+1)

∫ t/2

0

vαeivdv. (A 5)

For large t, this integral can be expressed in terms of the Gamma function,

J(α, t) =
2α+1

t(α+1)
i(α+1)Γ(α+ 1) + O(1/t). (A 6)

This result is obtained by deforming the contour of integration onto the upper
quarter-circle in the first quadrant and the imaginary axis. The integration along the
positive imaginary axis gives the Gamma function.

For n − 1 < Re(α) < n, where n is any positive integer, we apply (A 4) and utilize
the recurrence relation of the Gamma function Γ(α+ 1) = αΓ(α) to obtain

J(α, t) =
eit/2

i(t/2)

[
1 +

i

t/2
α+ α(α− 1)

(
i

t/2

)2

+ · · ·

+(α(α− 1) · · · (α− n+ 2)

(
i

t/2

)n−1
]

+
2α+1

tα+1
i(α+1)Γ (α+ 1) + O

(
1

tn+1

)
. (A 7)
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